# Biofiltración de emisiones gaseosas: fundamentos y aplicaciones

David Gabriel<sup>1</sup>, Xavier Gamisans<sup>2</sup>

<sup>1</sup>Universitat Autònoma de Barcelona (UAB)

<sup>2</sup>Universitat Politècnica de Catalunya (UPC)





Escola Politècnica Superior d'Enginyeria de Manresa

UNIVERSITAT POLITÈCNICA DE CATALUNYA

# **Contents (Part I)**

- Who we are
- Gaseous emissions
- Treatment technologies
- Tools that help us in improving knowledge

# **Contents (Part II)**

- Case study 1: Biological treatment of odours in a WWTP
- Case study 2: Biogas desulfurization with high performance Biotrickling Filters

### Who we are

Valorization and Biological treatment of wastewaters and waste gases: <u>www.genocov.com</u>

Part of the BIOGLS Technological Center (TECNIO)

**Research Group of biological treatment of** 

gaseous pollutants and odors (TRAGASOL)

More than 20 years of experience in biological treatment of wastewater and waste gases

UPC

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

BIO

tecnio

catalonia

3 a 31/12/2019

Grupo de Tratamiento Biológico de Efluentes Líquidos y Gaseosos

ACCIÓ

Departament d'Enginyeria Minera, Industrial i TIC

Department of Mining, Industrial and ITC Engineering Universitat Politècnica de Catalunya

www.biofiltration.cat





## **Gaseous emissions**

- Very complex
- Odorants and GHG
- Highly variable
- Dis/continuous emissions

| Location                      | H <sub>2</sub> S | RSC | NH <sub>3</sub> | VOC-NM | CH <sub>4</sub> | N <sub>2</sub> O | CO2 |
|-------------------------------|------------------|-----|-----------------|--------|-----------------|------------------|-----|
| Sewer                         |                  |     |                 |        |                 |                  |     |
| Barscreens                    |                  |     |                 |        |                 |                  |     |
| Grit chambers                 |                  |     |                 |        |                 |                  |     |
| Primary                       |                  |     |                 |        |                 |                  |     |
| Activ. Sludge                 |                  |     |                 |        |                 |                  |     |
| Thickeners                    |                  |     |                 |        |                 |                  |     |
| AD (biogas)                   |                  |     |                 |        |                 |                  |     |
| Dewatering                    |                  |     |                 |        |                 |                  |     |
| mpact<br>(no treatment): high |                  |     | medium          |        | Ιον             | low              |     |
|                               |                  |     |                 |        |                 |                  |     |

### Example: WWTP

### Gaseous emissions

- Very complex
- Odorants and GHG
- Highly variable
- Dis/continuous emissions
- Depend largerly on plant configuration and operational practices
- Large social concern
- Lack of regulation of odor emissions



## Gaseous emissions

- Very complex
- Odorants and GHG
- Highly variable
- Dis/continuous
  - emissions
- Depend largerly on plant configuration and operational practices
- Large social concern
- Lack of regulation of odor emissions

We need to characterize and treat emissions to avoid nuisance and other impacts

# **Characterization of gaseous emissions**







Target?



# **Available technologies**





# **Physical-chemical techniques**

- Well-established at industrial scale
- Proven reliable, stable, robust and effective for H<sub>2</sub>S and NH<sub>3</sub> (scrubbers) and VOCs (adsorbers)
- Fast startup
- Large operating costs for diluted gas flows
- Chemicals usage or bed replacement/regeneration

# **Mature biological techniques**





### Packed bed type reactors: microorganisms grow as a biofilm



Multiphase bioreactors mean multiple potential limiting steps



#### A simple open bed biofilter system



### Large biotrickling filters for odor control



## **Advantages** and drawbacks

Gas flow rate (m<sup>3</sup>/h)



- No chemicals: Reduced risks
- Reduced operating costs
- Effective for large gas flowrates with low concentrations of pollutants
- True pollutant degradation
- Proven reliable and robust at fullscale

# **Advantages and <u>drawbacks</u>**



Gas flow rate (m<sup>3</sup>/h)

- Treats only biodegradable and soluble compounds
- Needs cooling of air to reasonable temperatures
- Startup time can be long
- Clogging risks at medium/high loads
- Discontinous emissions may negatively affect process performance
- Needs some understanding of microbiology

### Tools that help us in improving knowledge

- Molecular biology tools for assessing microbial diversity and its evolution along time
- Respirometry and titrimetry to determine degradation mechanisms as well as kinetic and stoichiometric parameters
- Intensive contactors and vectors for gas-liquid mass transfer improvement
- Microelectrodes for assessing concentrations inside biofilms
- Modelling tools for... everything!









# Molecular biology tools for assessing microbial diversity and its evolution along time



The optimization and improvement in the design and operation of bioreactors needs of a deep study and characterization of the biocatalysts



Which are the relevant microorganisms?How populations evolve along time?How operating conditions affect the microbial ecology?Which are the removal mechanisms involved?

Main goals:

- To gain knowledge by characterizing and understanding basic phenomena during bioreactor operation in relation to the microbial communities

- To improve our capacity to prevent, diagnose and monitor bioreactor performance

### Pyrosequencing and FISH (RNA-based technology) to identify microbial diversity and its evolution along bioreactor operation



Removal mechanisms, stoichiometry and kinetics depends strongly on

microbial community characteristics, and must be determined ad-hoc

# Respirometry and titrimetry to determine degradation mechanisms and kinetic and stoichiometric parameters



# Respirometry and titrimetry to determine degradation mechanisms and kinetic and stoichiometric parameters



# Respirometry and titrimetry to determine degradation mechanisms and kinetic and stoichiometric parameters



Mora et al. Water Research

**R. 1:** 0.5  $H_2$ S + 0.5  $HS^-$  + 0.42  $O_2$  + 0.075  $CO_2$  + 0.005  $HCO_3^-$  + 0.016  $NH_4^+$  + 0.489  $H^+ \rightarrow$ 

**0.016**  $C_5H_7NO_2 + S^0 + 0.973 H_2O$ 

**R. 2:**  $S^0 + 1.22 O_2 + 0.267 CO_2 + 0.018 HCO_3^- + 0.057 NH_4^+ + 1.10 H_2O \rightarrow$ 

**0.057** C<sub>5</sub>H<sub>7</sub>NO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + 2.04 H<sup>+</sup>

### Microelectrodes for assessing concentrations inside biofilms

**Development** of a **Multi-Analite microsensor**, based on MEMS technology, for the measurement of:

- Chemical species
- Mass transport properties







11 gold electrodes of  $50\mu m$  diameter designed as working electrodes. 1 macroelectrode of 0.115 cm<sup>2</sup> designed as reference electrode

```
Ø=S=50μm
```

#### Novel alternative: Inkjet printing

### Microelectrodes for assessing concentrations inside biofilms

• Biofilm growth



Dynamic characteristics monitoring

• Lab-scale biofilm reactor (Flat Plate Bioreactor), reproducing the operation conditions of a biofilm-based reactor



### **Advanced modelling tools**

From rigorous models built in a home-made software environment...



### **Advanced modelling tools**

Modeling of a two-phase Flat Plate Bioreactor: Biomass concentration and velocity profiles





# **Cunit and Cubelles in the Mediterranean Coast**





The WWTP is in the middle of a commercial area, and close to residential areas...

# Odour affectation to the surroundings is quite likely



Odor is defined as a sensation resulting from the stimulation of sensory cells in the smell due to the presence of gas-phase organic and inorganic chemical compounds.



Olfactory threshold very low for several compounds



Some odor characteristics:

Similar substances have very different smells

ethylmercaptan (CH<sub>3</sub>CH<sub>2</sub>SH: rotten cabbage) alylmercaptan (CH<sub>2</sub>CHCH<sub>2</sub>SH: garlic)

• Smell may become saturaded rapidly with some substances

 $H_2S \rightarrow Olfactory detection limit: ~ 0.0047 ppb_v (~6 \mu g/m^3); saturation 30 - 40 ppm_v$ 

Odors are not additive: two or more odors can mask each other

# Odour in WWTP are usually treated with conventional physical-chemical technologies:

3 Chemical scrubbers in series

(1 acid, 2 NaOH + NaOCl)

- Main Pollutants; H<sub>2</sub>S, VOCs
- Low inlet concentrations
   H<sub>2</sub>S inlet = 1 - 40 ppm<sub>v</sub>
   COVs inlet = 0 - 6 ppm<sub>v</sub>





<u>The challenge</u>: to substitute reagents consumption by bacteria, with minimum investment and/or modification of the actual configuration

Pollutant + microorganisms + O<sub>2</sub>

Harmless end-products

### • Main problem: <u>Contact time (EBRT)</u>



# Pilot plant (BTF) designed *ad hoc* to test how much "stress" can overcome our bacteria



## Construction and installation of a pilot plant (WWTP Manresa)



Before pilot plant installation



Location of the pilot plant in the WWTP (16)



AIGÜES DE MANRESA S.A.

**Plant installation** 



### **Pilot plant operated during 1 year**



# Clearly a minimum EBRT is needed for satisfactory results



## Current conditions at the deodorization facility at Cunit-Cubelles WWTP

| Paràmetre                         | Valor                                 |  |  |  |
|-----------------------------------|---------------------------------------|--|--|--|
| Polluted gas flowrate( $Q_{in}$ ) | 10,000 m³/h                           |  |  |  |
| Contact time (EBRT)               | 1.5 s/reactor<br>4.5 s/three reactors |  |  |  |
| Reactor volume (V)                | 4 m <sup>3</sup>                      |  |  |  |
| рН                                | 6.5                                   |  |  |  |
| Make-up water                     | 0.4 m³/h                              |  |  |  |
| Recirculation                     | 5 m³/h                                |  |  |  |
| Pollutants                        | H₂S, Volatile Organic<br>Compounds    |  |  |  |
| $H_2S$                            | 2 – 30 ppm                            |  |  |  |
| VOCs                              | o – 6 ppm                             |  |  |  |
| Liquid volume per reactor         | 1.8 m <sup>3</sup>                    |  |  |  |



# The proposed solution should alson account with seasonal variations....



### ...and hourly variations!!



- Low loads during the morning until the afternoon
- High loads during the late afternoon

### Conversion protocol of chemical scrubbers into

### **BTFs at the Cunit-Cubelles WWTP**

#### **Conversion performed by ECOTEC under the supervision of UPC and UAB**

#### **Main modifications**

- Packing material replacement
- Gas-liquid separator replacement
- Paclimg mat. Support replacement
- Pumps replacement (lower power)
- Flowmeters and valves
- pH and level controls
- Inoculation port placement
- Distribution liquid system replacement
- Pressure drop monitoring















### **Process monitoring**

#### Sampling and monitoring protocols stablished



### **Main results**



- Start-up a bit slower tan pilot tests
- Average removal efficiency: RE >97%
- System able to face inlet load fluctuations

### **Odor abatement**

#### **Results from dynamic olfactometry Odor removal** 85% April May 68% June 90% 93% July September 72% 0% 10% 50% 60% 20% 30% 40% 70% 80% 90% 100% Inlet (OU/m<sub>3</sub>) ∎ Outlet (OU/m<sub>3</sub>)

- Average odor RE 81%: Higher odor concentration  $\rightarrow$  higher RE
- Number of odor complaints reduced to few punctual episodes

### **Economic feasibility**

**Cost-Benefit analysis** based in the amount of reagents needed for complete pollutants abatement.



# CASE STUDY 2 **Biogas desulfurization** with high performance **Biotrickling Filters**



# Hydrogen sulfide oxidation by chemoautotrophic bacteria



### Where we did the work?



#### **EXPERIMENTAL SETUP**

#### **TYPICAL OPERATING CONDITIONS**

- Volume = 2.15 L
- Gas residence time (EBRT) = 180 s
- Liquid residence time = 10h
- More than 5 years under continuous operation
- pH control (6.0 and 2.0)
- [H<sub>2</sub>S ]<sub>in</sub> = **2000** to 10000 ppm<sub>v</sub>
- Packed with:
  - Inox Pall rings (10mm)
  - Plastic HD-QPack
- Inoculation with WWTP aerobic sludge





# ... but we also have done some work in full-scale biotrickling filters



2500 ppm<sub>v</sub> H<sub>2</sub>S; 83 m<sup>3</sup> biogas h<sup>-1</sup>
Oxygen transfer and solids flushing
1" Pall rings
Acid pH (2.6) and pH control by make-up water
Some drawbacks observed...



### Elemental S accumulation is the main bottleneck of the process for the treatment of high loads of H<sub>2</sub>S

| $(ppm_v)$ ( $gm_2^{\circ} mm)$ ( $vv$ ) ( $vv$ ) |  |
|--------------------------------------------------|--|
| 3,000 74 5.3 60-70 28-38                         |  |
| 6,000 155 2.6 20-30 68-78                        |  |
| 10,000 259 1.6 3-4 94-95                         |  |

(Fortuny et al, 2008, Chemosphere)





#### **Biogas desulfurization: experiencies from lab-scale to full-scale**

#### A range of designs, operational conditions and strategies have been tested

| H <sub>2</sub> S <sub>in</sub><br>(ppm <sub>v</sub> ) | EC <sub>max</sub><br>(g H <sub>2</sub> S m <sup>-3</sup> h <sup>-1</sup> ) | O <sub>2supplied</sub> | S-SO <sub>4</sub> <sup>2-/</sup><br>S-H <sub>2</sub> S <sub>removed</sub><br>(%) | pН  | Packing                | G/L flow<br>pattern   |                                     |
|-------------------------------------------------------|----------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------|-----|------------------------|-----------------------|-------------------------------------|
| 8000                                                  | 190                                                                        | Gas pipe               | 12                                                                               | 6   | HD-Qpack<br>structured | Counter<br>current    | Fortuny et al, 2008,<br>Chemosphere |
| 8000                                                  | 175                                                                        | Gas pipe               | clogging                                                                         | 6   | PUF                    | Counter<br>current    | Fortuny et al, 2008,<br>Chemosphere |
| 8000                                                  | 201                                                                        | Diffuser               | 57                                                                               | 6.5 | HD-Qpack<br>structured | Counter<br>current    | Montebello et al, 2010,<br>CEJ      |
| 8000                                                  | 223                                                                        | Diffuser               | 56                                                                               | 2.5 | Pall rings             | Counter<br>current    | Montebello et al, 2014,<br>JHazMat  |
| 2500                                                  | 72                                                                         | Difusser               | 52                                                                               | 1.9 | Pall rings             | Co+Counter<br>current | Rodríguez et al, 2014,<br>PSEP      |
| 2500                                                  | 54                                                                         | Jet-venturi            | 61                                                                               | 1.7 | Pall rings             | Co+Counter<br>current | Rodríguez et al, 2014,<br>PSEP      |
| 8000                                                  | 212                                                                        | Diffuser               | 52                                                                               | 6.5 | Pall rings             | Cocurrent             | López et al., in prep               |

#### Biogas desulfurization: experiencies from lab-scale to full-scale

### Leasons learned so far...

- It works!!! Robust process: long-term stability if periodically cleaned
- Packing material surface area is not critical
- Packing material structure plays a major role in S<sup>0</sup> flushing/biomass retention
- Cocurrent G/L flow pattern is slightly better that countercurrent
- H<sub>2</sub>S removal at acid pH slightly improves H<sub>2</sub>S EC
- At acid pH microbial diversity is lower but less competition/problems occur
- Maximum performance  $EC_{max} = 210-220 \text{ g H}_2 \text{S/m}^3 \text{h}$  increasing concentration
- Key factor: oxygen supply
  - 1. If large, excessive biogas dilution
  - 2. If short, excessive S<sup>0</sup> production

### What is limiting reactor performance at high concentrations? Oxygen G-L mass transfer





|                                        | Aeration                           | system      |                                   |  |
|----------------------------------------|------------------------------------|-------------|-----------------------------------|--|
| Variable                               | Compressor Jet venturi<br>(D2) (G) |             | Units                             |  |
| Hq                                     | 1.88 ± 0.07                        | 1.82 ± 0.02 | -                                 |  |
| Air Flowrate                           | 22.1 ± 5.7                         | 4.7 ± 2.1   | m <sup>3</sup> h <sup>-1</sup>    |  |
| DO                                     | 1.4 ± 1.1                          | 1.5 ± 1.6   | mg l <sup>-1</sup>                |  |
| % CH4                                  | 51 ± 6                             | 57 ± 3      | % v/v                             |  |
| Water consumption                      | 4.3 ± 1.0                          | 7.6 ± 2.7   | m <sup>3</sup> d <sup>-1</sup>    |  |
| Biogas Flowrate                        | 1875 ± 397                         | 1746 ± 434  | m <sup>3</sup> d <sup>-1</sup>    |  |
| H <sub>2</sub> S in                    | 2556 ± 334                         | 2468 ± 398  | ppm <sub>v</sub>                  |  |
| H <sub>2</sub> S out                   | 58 ± 158                           | 29 ± 16     | ppm <sub>v</sub>                  |  |
| Sulfate                                | 3351 ± 551                         | 2040 ± 408  | mg SO₄²- I-1                      |  |
| RE                                     | 98 ± 7                             | 99 ± 1      | %                                 |  |
| EC                                     | 72 ± 22                            | 66 ± 18     | g m <sup>-3</sup> h <sup>-1</sup> |  |
| Inlet Load                             | 78 ± 23                            | 67 ± 20     | g m <sup>-3</sup> h <sup>-1</sup> |  |
| Ratio O <sub>2</sub> /H <sub>2</sub> S | 23 ± 2                             | 5 ± 1       | mol $O_2$ mol $H_2S^{-1}$         |  |
| %Conversion to sulfate                 | 52 ± 19                            | 69 ± 43     | %                                 |  |

# Periodic elemental sulfur oxidation to avoid reactor clogging



## Take home ideas:

Bioreactors work and are very competitive vs physical-chemical processes

Further research is needed to expand the potential fields of application of gas-phase bioreactors

G-L mass transfer and biology are the key aspects in reactors performance and design

Multidisciplinary approaches and tools (biology, monitoring, modelling...) are needed to improve knowledge

### Some public funding

**Desarrollo y caracterización de biorreactores para el tratamiento biológico de efluentes gaseosos** (CICYT PPQ2003-02482). 2003-2006

Tratamiento por biofiltración de efluentes odoríferos contaminados con compuestos orgánicos e inorgánicos volátiles (MMA 183/2006/3-11.1). 2006-2007

**Tratamiento integral de efluentes gaseosos en instalaciones industriales mediante biorreactores** (CICYT CTQ2006-14997-C02). 2006-2009

Desulfuración de gases ricos energeticamente mediante biofiltros percoladores: desarrollo y optimizacion del proceso en condiciones anoxicas y aerobias (CICYT CTM2009-14338-C03). 2010-2012

Monitorizacion, modelizacion y control para la optimizacion de biofiltros percoladores de desulfuracion anoxicos y aerobios (CICYT CTM2012-37927-C03). 2013-2015

Desarrollo de un proceso integral de tratamiento de SOx y NOx procedentes de gases de combustión orientado a su valorización (MINECO CTQ2015-69802-C2). 2016-2018

**Developing on line tools to monitor, control and mitigate GHG emissions in WWTPs** (Horizon 2020 Sub-programme Call: H2020-MSCA-RISE-2014 , Project ID: 645769). 2015-2019

### Some private funding

Estudio de la viabilidad de la eliminación de sulfuro de hidrógeno a altas concentraciones mediante biofiltración. (Tecnium, Casals Cardona Industrial). 2005-2006

**Optimización de rellenos utilizables como soporte para la biofiltración de corrientes gaseosas** (Sistemas y Tecnologías Ambientales). 2005-2006

**Conversión de lavadores químicos en biofiltros percoladores para el tratamiento de gases residuales** (Ecotec S.A.) 2009-2011

Optimización de Compostaje, Biosecado y Olores (Urbaser S.A.) 2013-2015

Nuevas formulaciones para la obtención del pigmento azul ultramar (Grupo Ferro Inc.) 2015-2017



# Biofiltración de emisiones gaseosas: fundamentos y aplicaciones

david.gabriel@uab.cat

xavier.gamisans@upc.edu