

<u>12/5/2016</u>

Researc	n expertise resources within the water-energy nexus
	BiolElectrochemical Systems/Technologies (BES/T)
	Direct electricity production: Microbial Fuel Cells (MFC)
	 Simultaneous C and N removal (industrial/urban wastewater)
	Biocathodes potential:
	 Microbial Electro Synthesis (MES) Biogas upgrading: conversion of CO₂ to CH₄ Carboxylic pathway: CO₂ to Acetate and chain elongation Groundwater Pollutants reduction: Nitrate removal from groundwater, NoNit® Sulphate removal Arsenic removal
TECNIO Directo Becompetitive Universit	itata:Girona

Research examples

BNR: Panammox[®] process; Bioelectrochemical Technologies

<u>14</u>

<u>15</u>

<u>31</u>

Inormod	vnamice anal	VCAC

Reaction	Microbe	Carboxylate conversion reactions	Coupled repetitions ^d	ΔGr ^{°'} (kJ/mol at 37 °C) ^e	∆Gr ^{o′} (kJ/mol at 55 °C
(c) Carbon dioxide reduction to acetate	Acetobacterium woodii	$4H_2 + 2CO_2 \rightarrow acetate^- + H^+ + 2H_2O$		-86.78	-74.5
(d) Hydrogenotrophic methanogenesis	Methanospirillum hungatei	$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$		-125.84	-118.4
e) Carboxylate reduction with	Mixed	acetate ⁻ + H ⁺ + 2H ₂ \rightarrow ethanol + H ₂ O propionate ⁻ + H ⁺ + 2H ₂ \rightarrow propanol + H ₂ O		-7.22 -7.49	-4. -4.
molecular hydrogen	cultures	<i>n</i> -butyrate ⁻ + H ⁺ + 2H ₂ \rightarrow <i>n</i> -butanol + H ₂ O <i>n</i> -caproate ⁻ + H ⁺ + 2H ₂ \rightarrow <i>n</i> -bexapol + H ₂ O		-3.58 -7.55	-0." -3.
e) Propionate	c	$ethanol + H_2O \rightarrow acetate^- + H^+ + 2H_2$	×1	7.22	4.:
reduction with ethanol		$propionate^- + H^* + 2H_2 \rightarrow propanol + H_2O$	×1	-7.49 Total = -0.27	-4. Total = -0.
f) Aceticlastic methanogenesis	Methanosaeta soehngenii	$acetate^- + H^* \rightarrow CH_4 + CO_2$		-39.06	-43.
g) Chain elongation of acetate	Clostridium kluyveri	ethanol + $H_2O \rightarrow acetate^- + H^+ + 2H_2$ ethanol + $acetate^- \rightarrow n$ -butyrate ⁻ + H_2O	×1 ×5	7.22 -201.68 Total = -194.46	4. –198. Total = –194.
g) Chain elongation of <i>n</i> -butyrate	C. kluyveri	ethanol + $H_2O \rightarrow acetate^- + H^+ + 2H_2$ ethanol + <i>n</i> -butyrate ⁻ \rightarrow <i>n</i> -caproate ⁻ + H_2O	×1 ×5	7.22 – 190.00 Total = – 182.78	4. –195. Total = –190.
i) Lactate oxidation to <i>n</i> -butyrate	Clostridium acetobutylicum	2 acetate ⁻ + H ⁺ + 2H ₂ \rightarrow <i>n</i> -butyrate ⁻ + 2H ₂ O 2 lactate ⁻ + H ⁺ \rightarrow <i>n</i> -butyrate ⁻ + 2CO ₂ + 2H ₂	×1 ×2.5	-47.55 -209.35 Total = -256.90	-44. -232. Total = -276.
j) Lactate reduction to propionate	Selenomonas ruminantium	$\begin{array}{l} \text{lactate}^- + H_2 O \rightarrow \text{acetate}^- + CO_2 + 2H_2 \\ \text{lactate}^- + H_2 \rightarrow \text{propionate}^- + H_2 O \end{array}$	×1 ×2	28.51 –86.63 Total = –58.12	25. –85. Total = –59.

C ₂ -C ₄	platform chemicals	300
The ma	gic treble	
1. 2. 3.	Carbon Source (CO ₂) Reducing power (H ₂). High P_{H2} Carboxydotrophic mixed culture	
From AD enr	chment with syngas	Identition (96.)
	Clostridium carboxidivorans P7 (NR_104768.1) 1 Clostridium scatologenes K29 (AB610570) Clostridium drakei FP (NR_114863.1)	100
	Clostridium ljungdahlii DSM13528 (NR_074161.1) 2 Clostridium ragsdalei (DQ020022) Clostridium autoethanogenum DSM10061 (CP006763.1)	100
	3 Uncultured <i>Firmicutes</i> clone (GU559846.1)	94
	Ganigué e	t al. LEQUIA. (2015) Chem. Commun.

<u>37</u>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

<u>40</u>

Different s	cale-MFC c	ompariso	on	MAC DIK	
Process	Analysed parameter	mL-SCALE	High tre	atment	
Onevetienel	Net volume	6	efficiency w	ith low CE	
Operational	Flow	3			
Organic matter	Organic matter removal rate	2.09±0.76	1.65±1.00	kg COD m ⁻³ d ⁻¹	
oxidation	Organic matter	15		0/	
	removal efficiency	15	Similar workability		
	Coulombic efficiency	24		70	
	Nitrification rate	0.26±0.06	0.34±0.10	kg N m ⁻³ d ⁻¹	
Nitrification	Nitrification	<92	692	%	
	efficiency	~ 52	52	70	
	Nitrogen removal	0 16+0 06	0 13+0 08	kg N m ⁻³ d ⁻¹	
	rate	0.10±0.00	0.13±0.00	Kg N III ^a u	
Denitrification	Nitrogen removal	7	Higher pow	er density	
	efficiency	,	recove	red	
	Coulombic efficiency	10		~	
Electricity production	Power density	20	300	mW m⁻³	

Anod	e potential: > +	800 mV vs SHE		
	Electron donor	Oxidation reaction (redox potential at pH 7)	Electrode material	Catalysis
	Acetate	E0' = -290 mV vs SHE	Graphite	Biotic
	Water	E0' = +840 mV vs SHE	Graphite	Abiotic
			Stainless steel	Abiotic
	Chloride	E0' = +890 mV vs SHE	Ti-MMO	Abiotic
	Nitroge	en reduction and desin	fection using	the same

<u>12/5/2016</u>

<u>54</u>

